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Abstract

It is well known that the celebrated Kojima-Mizuno-Yoshise primal-dual
interior-point method for linear programming can be viewed as a damped per-
turbed Newton’s method. Recently, Mehrotra suggested a predictor-corrector
variant of this method. It is currently the interior-point method of choice for
linear programming. The simplified Newton method, at the expense of fast
convergence, reduces the work required by Newton’s method by reusing the
initial Jacobian matrix. The composite Newton method attempts to balance
the trade-off between expense and fast convergence by composing one Newton
step with one simplified Newton step. In this work we demonstrate that if the
Newton component in the Kojima-Mizuno-Yoshise primal-dual method is re-
placed with a composite Newton component, then the resulting method is the

Mehrotra predictor-corrector method.

1 Introduction

In subsection 1.1 we review the composite Newton method, in 1.2 we recall the primal-
dual interior-point method, in 1.3 we present Mehrotra’s predictor-corrector interior-
point method, and in 1.4 we present our perturbed composite Newton interior-point
method. Section 2 contains equivalence results between the Mehrotra predictor-
corrector method and the perturbed level-1 composite Newton method. Since the
level-1 composite Newton method is known to be cubically convergent, in Section 3 we
study the cubic convergence aspect of the Mehrotra predictor-corrector interior-point
method via our equivalence result. It is interesting to learn that the interior-point fea-
ture of the method, i.e., the step is damped so that iterates remain positive, precludes
the standard proof of cubic convergence of the method. However, for nondegenerate
problems it is possible to retain quadratic convergence. Recall that Zhang, Tapia and

Dennis (1990) demonstrated that the primal-dual interior-point method can attain
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quadratic convergence for nondegenerate problems. We then prove that by choosing
steplength one in a neighborhood of the solution, cubic convergence can be attained

by the predictor-corrector interior-point method for nondegenerate problems.

Numerical experimentation with the cubically convergent modification is most im-
pressive and has been relegated to a companion paper, El-Bakry, Tapia and Zhang
(1991), which numerically studies the local behavior of the predictor-corrector algo-
rithm. Clearly an optimal implementation of the composite Newton interior-point
method would allow m (the number of simplified Newton steps) to vary at each New-
ton step. This issue is not the subject of the current work, but probably merits further

study. Finally, in Section 4 we give some concluding remarks.

1.1 The Composite Newton Method

Consider the nonlinear equation

F(z)=0 (1.1)

where F': IR" — IR". By the damped Newton method for problem (1.1) we mean the
iterative process
solve F'(xp)(Az) = —F(xx) for Ax

(1.2)
set Tpa1 = v+ apAx,  k=0,1,... .

The flexibility of being able to choose «j less than one is important from global
convergence considerations. When the choice of steplength is o = 1 we drop the

qualifier damped.

Under standard assumptions Newton’s method is known to give ()-quadratic con-
vergence. Not counting the work required to evaluate the function F' or its Jacobian,
the algebra required per iteration is O(n?), since the dominant task is the factorizing

of the n x n Jacobian matrix F’(xy). For large n this can be a very serious concern.



A particularly obvious technique for reducing the amount of algebra needed at

each iteration is given by the damped simplified Newton method

SOlVe F’(.’lfo)(Am) = —F(.’l,‘k) fOI' A’L (13)

set Tpe1 = Cp FarAx, k=0,1,....
The simplified Newton method requires an initial factorization of F'(zy) and then
a solve at each iteration; hence it requires only O(n?) algebra per iteration. However,
it gives only (J-linear convergence and it is not at all clear in what cases it should be
preferred to Newton’s method, since the slow convergence might force a prohibitive

number of iterations.

In an effort to cover the middle ground between the extremes of Newton and
simplified Newton it is very natural to consider the variant of Newton’s method which
takes m simplified Newton steps between every two Newton steps. By the damped

(level-m) composite Newton method we mean the iterative procedure

solve F'(ap)(Az;) = —F(ar+ Axg+ -+ Awxiq)) for Az;,i=0,...,m
set Trt1 = Tk + ap(Azo+ Ay + -+ ), , k=0,1,....

(1.4)

Of course it is possible to introduce a different steplength control oy ; for each cor-

rection Az;, 1 = 0,...,m; however we have no need to consider such flexibility.

It is reasonably well known that, under the standard Newton’s method assump-
tions, the level-m composite Newton method has a ()-convergence rate of m + 2. A
proof can be found in Chapter 10 of Ortega and Rheinboldt (1970). The damped
level-1 composite Newton method where one Newton step is composed with one sim-

plified Newton step is of particular interest to us. It can be written
solve F'(ap)(Axn) = —F(xy) for Axy
solve F'(z)(Axg) = —F(er + Aan) for Azg (1.5)
set Thy1 = & + o (Aay + Axg), k=0,1,....



Ortega and Rheinboldt (1970) credit the cubic convergence of the level-1 composite
Newton method to Traub (1964). However, the notion of composing Newton steps
with simplified Newton steps is much older and a part of the folklore of Newton’s
method. It is generally felt by practitioners that the formulation of composite Newton
steps is of value when n is large and the function F' can be evaluated cheaply; this is
clearly the situation for the primal-dual interior-point method for linear programming

described in Subsection 1.2.

Observe that each level-m composite Newton iterate can be viewed as a major
iterate and is the result of m + 1 inner iterations. The average amount of algebra
per inner iteration is O((n® + mn?)/ (m + 1)) and is O(n?) for large m. The average
convergence rate for the inner iterates is the (m + 1)-st root of m + 2 and behaves
like 1 for large m. It is no surprise then that for large m the level-m composite
Newton method behaves like the simplified Newton method. It follows that an optimal
implementation of composite Newton would not only vary m at each Newton step

but would keep m relatively small.

1.2 The Primal-Dual Interior-Point Method

Consider a linear program in the standard form

minimize Tz
subject to Aw =0 (1.6)
x>0

where c,z € R", be R™, A € R™*" (m < n) and A has full rank m.
The first-order optimality conditions for the linear program (1.6) can be written

Ar—0b
Flz,yM)=| ATA+y—-c | =0, (z,y)20 (1.7)
XYe

ot



where y € IR" and A € IR™ are dual variables, X = diag(z), Y = diag(y), and
el =(1,...,1) e R™.

The point (z,y, A) is said to be feasible for problem (1.7) if Az = b, ATA+y—c =0,
and (z,y) > 0. A feasible point (z,y, A) is strictly feasible if (z,y) > 0. We tacitly
assume that strictly feasible points exist.

It is now well understood how the primal-dual interior-point method introduced by
Kojima, Mizuno and Yoshise (1989) can be stated in the framework of a damped and
perturbed Newton’s method applied to problem (1.7). In presenting this algorithmic
framework we will write z = (v,y,A), Az = (Az,Ay,AX), AX = diag(Az), and
AY = diag(Ay). We also let min(u«) denote the smallest component of the vector u
and ¢ denote the vector (0,...,0,1,...,1)7 where the number of zeros is n + m and

the number of ones is n.
Algorithm 1 (Primal-Dual Interior-Point Method)
Given zy = (wo, Yo, Ao) With (zg,y0) > 0, for £ =0,1,..., do
(1)  Solve F'(zx)(Az) = —F(z) for Azy (1.8)
(2)  Choose g > 0 and
solve F'(z,)(Az) = ppé for Az,
(3) Set Az = Azy + Az,

(4) Choose 7 € (0,1) and set o = min (1, 74é;) where

—1 —1
v = m 1.9
k= ( min (X;'Az) ’ min (Yk_lAy) (1.9)
(5) Set zry1 = zp + aAz.

Actually in most implementations the formula (1.9) for ay is further broken down
and one steplength is used to update the z-variable and another is used to update
the y-variable and the A-variable. While this distinction is of value in practice, it is

not an issue in the present work and consequently will be ignored.
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Recently, under mild assumptions, Zhang, Tapia and Dennis (1990) demonstrated
that for nondegenerate and degenerate problems @)-superlinear convergence could be
attained by Algorithm 1 by merely letting o), — 0 and 7 — 1, where oy 1s defined
by px = oxxtyr/n. Moreover, for nondegenerate problems Q-quadratic convergence
could be attained by letting o), = O(«Ty;) and 7 = 1 + O(xfyx). Zhang and Tapia

(1991) showed that these results held under weaker assumptions.

The Newton step Azy defined in Step (1) can very likely point toward the bound-
ary of the positive orthant, necessitating a very small choice for the steplength o.
The major role of the centering step Az, defined in Step (2) is to remedy this situ-
ation. Hence it seems quite reasonable that the choice for the centering parameter
jtx should also be a function of the Newton step Azy. This is particularly true in
delicate applications. For example, recently there was considerable speculation as
to whether an instance of Algorithm 1 could have both polynomial complexity and
superlinear convergence. In their original paper Kojima, Mizuno and Yoshise (1989)
presented choices for 7 and gy, leading to polynomial complexity. Zhang, Tapia and
Dennis (1990) presented conditions on 74 and p, that guaranteed superlinear conver-
gence. Zhang and Tapia (1990) settled this concern by demonstrating the existence
of choices for 73 and py that guaranteed both polynomial complexity and superlinear
convergence. Ji, Potra, Tapia and Zhang (1991) extended this result to linear com-
plementarity problems. In both these applications the choice of y; depended strongly
on the Newton step Azy. Hence, the centering step Az, had to be calculated as
described in Step (2) above. However, in less delicate applications where p; depends
only on z, Steps (1) and (2) in Algorithm 1 can be combined and the combined step

Az = Azy + Az, can be obtained as the solution of
FI(ZA,)(AZ) = —F(Zk) + /Lk:ék, . (110)

In this way the backsolve required by Step (2) can be saved. This is the more com-

mon presentation of the Kojima-Mizuno-Yoshise algorithm and is fine for restricted
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applications.

The sense in which the primal-dual interior-point method can be viewed as damped
perturbed Newton should be clear. The qualifier damped speaks to the steplength
ar < 1 in Step (5). The qualifier perturbed speaks to the fact that the step Az

consists of the Newton step Azy perturbed by the centering step Az.; see Step (3).

1.3 The Predictor-Corrector Interior-Point Method

Mizuno, Todd, and Ye (1989) suggested and studied an algorithm which they labeled
a predictor-corrector algorithm. In their algorithm the predictor step is a damped
Newton step for problem (1.7), producing a new strictly feasible iterate. The subse-
quent corrector step is a centered Newton step. In this corrector step, the choice of p,
the centering parameter, is based on the predictor step. Both the predictor and the
corrector steps require essentially the same amount of work, namely, the evaluation

and factorization of the Jacobian matrix.

Mehrotra (1989) later presented the following variant of Algorithm 1, which he
also referred to as a predictor-corrector method. A common feature in these two
predictor-corrector approaches is that the value of the centering parameter in the
corrector step depends on the predictor step. However, unlike Mizuno, Todd and
Ye’s corrector step, Mehrotra’s corrector step does not evaluate a fresh Jacobian
matrix. Instead, it reuses the Jacobian matrix used by the predictor step. Recall
that &= (0,...,0,1,...,1)T.

Algorithm 2 (Predictor-Corrector Interior-Point Method)

Given zg = (wo, Yo, Ao) With (xy,40) > 0, for k =0,1,... do

(1)  Solve F'(zi)(Az)=—F(z) for Az,
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0
Solve F'(z)(Az) = — 0 for Az

AX,Ay,

Choose i > 0 and
solve F'(zx)(Az) = pupé for Az,
Set Az = Az, + Azy + Az,

Choose 7 € (0,1) and set «y = min (1, 7xGx) where (1.11)

. . -1 -1
&y = min ) —————
* (Hlille_lA:lf) min(Y}, lAy))
Set zpy1 = zp + oAz .

While in the present section we are not concerned with the specific choice of the

initial iterate zp or the various algorithmic parameters, we emphasize that Mehrotra

suggested choices that allowed him to obtain very impressive numerical results.

1.4 The Perturbed Composite Newton Interior-Point Method

In this subsection we present our perturbed composite Newton interior-point method

for problem (1.7). Recall that ¢ = (0,...,0,1,...,1)T. Ourideais to replace the New-

ton component in the primal-dual interior-point algorithin with a composite Newton

component.

Algorithm 3 (Level-m Perturbed Composite Newton Interior-Point Method)

Given zg = (2o, Yo, Ao) With (zg,y0) > 0 for k =0,1,..., do

(1)
(2)

(3)

Solve F'(zy)(Az) = —F(z;) for Az
For ¢=1,...,m do
i1
Solve F'(z)(Az) = —F(z + Y Az;) for Az (1.12)

7=0

Choose py > 0 and solve F'(z;)(Az) = puré for Az,
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™m

(4)  Set Az=> Az + Az
=0
(5)  Choose 7 € (0,1) and set o = min (1, 74dx) where

. . -1 ~1
k= (min(Xk_lAzz:) ’ min(Yk_lAy))
(6)  Set zpy1 = zx + arAz .

2 Predictor-Corrector as Perturbed Composite

Newton

We say that two algorithms are equivalent if given a current iterate they produce
the same subsequent iterate for the same choice of common algorithmic parameters.

Theorem 2.1 The predictor-corrector interior-point method (Algorithm 2) is equiv-

alent to the level-1 perturbed composite Newton interior-point method (Algorithm 3).

Proof. Let z = (z,y,\) be the current iterate and let Az, = (Ax,, Ay,, A),) be the
predictor step for problem (1.7), i.e.; Az, is obtained from Step (1) of Algorithm 2.
By comparing Algorithm 2 with Algorithim 3 (m = 1), we see that our proof will be

complete once we show that

0
F(z+4+ Az,) = 0 . (2.1)
AX, Ay,
Writing (2.1) in further detail gives
Al + Ax,) —b=0 (2.2)
ATAN+AN) +(y + Ayy) —c=0 (2.3)
[v + Az, )ily + Ay, ) = [Az)ilAy )i, t=1,...,n. (2.4)
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By expanding we see that (2.4) is equivalent to
[y]:[Azp)i + [)i[Ayp)i = —[alily)i, ¢=1,...,n. (2.5)

However, (2.2), (2.3) and (2.5) are exactly the defining relations for the Newton step.
Moreover, from the definition of Az, in Step (2) of Algorithm 2 it 1s clear that Az,

is the Newton step. Hence (2.1) holds and we have established the equivalence. O

While in Mehrotra (1989) no explanation for the predictor-corrector method is
given, in a more recent paper, Mehrotra (1990), Mehrotra offers an interpretation
of a related, but somewhat different, algorithm. Following the lead of Monteiro,
Adler, and Resende (1988) he constructs a standard homotopy in a parameter, say 6,
between problem (1.7) and a problem which had the current iteration as its solution.
The primal-dual trajectory path parametrized by ¢ gives the solution of problem (1.7)
for 6 = 0 and the current iterate for 6 = 1. He then views the iterate obtained from
the predictor-corrector method as a point on a quadratic path which approximates

the primal-dual trajectory path.

The equivalence represented by Theorem 2.1 was conjectured while listening to
Mehrotra discuss his predictor-corrector method at the Second Asilomar Workshop on
Progress in Mathematical Programming, Monterey, California, February 4-7, 1990.
After proving Theorem 2.1 and while preparing this paper we received the paper
of Lustig, Marsten, and Shanno (1990). In this paper the authors describe a com-
prehensive implementation of the Mehrotra predictor-corrector method and present

impressive numerical results.

Lustig, Marsten and Shanno (1990) motivate Mehrotra’s predictor-corrector method
in the following manner. Rather than applying Newton’s method to (1.7) to gener-
ate correction terms to the current iterate, they consider F(z + Az) = pé directly,
yielding

Al + Ax) =D (2.6a)
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AT+ AN —(y+Ay) =c (2.6b)
[+ Ax)ily+ Ayli=p, i=1,...,n. (2.6¢)

Simple algebra reduces (2.6) to the equivalent system

AAr =D — Ax (2.7a)
ATAN=Ay=c— ATA +y (2.7b)
[«]i(Ayli + [hilAali = p = [eLily): — [AxlAyl:, i=1,...,n. (2.7¢)

Observe that (2.7) defines the step (Ax, Ay, AX) implicitly, i.e., in a nonlinear
manner. In order to determine a step approximately satisfying (2.7) it seems reason-
able to first solve F'(z) = 0 for the Newton (predictor) step (Ax,, Ay,, A),) and then
use Az, and Ay, on the right-hand side of (2.7) to solve for an “improved” step from

(2.7) with this modified right-hand side.

It should be clear that the presentation (2.7), with Az and Ay replaced by Ag,
and Ay, only on the right-hand side reflects the level-1 composite Newton method

corresponding to an unperturbed version written in the form
Fl(z)Az = —[F(20) + Fz — F'(2) 7 F(z0)] (2.8)

while Mehrotra’s original presentation reflects form (1.5).

Lustig, Marsten and Shanno (1990) attempt an explanation of the predictor-
corrector notion in terms of trajectories parametrized by the parameter u. Their
explanation contains some ambiguity in that it is not clear to what trajectories they
are referring. Moreover, any explanation based on issues derived from g cannot give
a complete picture, since the predictor-corrector notion still makes sense even when
the problem formulation is free of y, i.e. 4 = 0 in all cases. However, implicit in these
authors’ comments is the understanding that the corrector step can be viewed as a

perturbed simplified Newton step.



3 Cubic Convergence

Much of the following analysis follows directly from material in Dennis and Schnabel

(1983) or Ortega and Rheinboldt (1970). As before we consider problem (1.7) and

use the notation z = (z,%,\). Also, recall that é = (0,...,0,1,...,1)7 where the

number of zeros is n +m and the number of ones is n. The pure Newton method can

be written

N(z)=z— F'(z)"'F(2)

and the predictor-corrector interior-point method can be written

Therefore

Now, locally, i.e.

N(z) =z — aF'(z)7'[F(2) + F(N(2)) — pé] .

zo — F'(z)7Y[F(2) + F(N(2))]

—F'(2)H{[F(N(2)) = F(z.) = F'(z)(N(2) = 2]
+[F'(z) = F'(2)[(N(2) — 2.)}
+(1 — ) F'(2)[F(2) + F(N(2))] + (x/l,F'(z)_lé.

Newton’s method analysis that

Hence, we can rewrite the four terms on the right-hand side in (3.3) and obtain

IN(2) = 2]l = O(llz — z.|%) -

(3.1)

(3.3)

in a neighborhood of the solution z., we know from standard

1V(2) = 2]l = Oz = 2:)1*) + Ollz = =) + 11 = alO(]|z = z]}) + 1O(1) ;
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which simplifies to
IN(2) = 2l = O(llz = z*) + 1 = O]z = z]l) + pO(1) - (3-4)

In deriving (3.4) we used the fact that |[F(z)] = O(||z — 2]|) and |[|[F(N(2))|| =
O(llz = 2I)-

The term pO(1) can be made O(||z — z.|*) by the choice of y. Everything now
hinges on the term |1 — «|O(]|z — z.||). We must therefore take a very close look at

the quantity 1 — . Clearly, for cubic convergence, we need |1 — af to be O(]|z — z.||?).

Assuming strict complementarity, z, is a nondegenerate vertex solution, and zj is

feasible. Zhang, Tapia and Dennis (1990) obtained the useful expression

L — 7+ o0k
1-— AR = w -+ O(.’Ifz:zl/k) (35)

for the Newton interior-point method. See (3.7) of Zhang, Tapia and Dennis (1990).
In (3.5), 7 and oy are as in Algorithmn 1, 6 € (+,1] and O(x1yx) is not necessarily

zero and is exactly first order. Observe that O(«Xy,) = O(]|z — 2.|), since for feasible

2, we have aly, = || F(zx)]]1-

For the present purpose of studying 1 — «y, the predictor-corrector primal-dual
interior point method and the primal-dual interior-point method are philosophically
the same, i.e., both can be viewed as perturbed Newton. In the former case the per-
turbation to the right-hand side of the defining relation is pé — F(z — F'(2)7' F(z)),
while in the latter case the perturbation is merely pé. Observe that these two pertur-
bation terms differ by a term which is order O(]|z — z.||?) or equivalently O((27 yx)?).
Hence (3.5) is also valid for the Newton predictor-corrector interior-point method.
It can now be seen from (3.5) that independent of the choices for 7 and oy, the
term |1 — ay| is at best O(]|z — z.||) and the Newton predictor-corrector interior-point
method, even for nondegenerate problems, cannot be shown to be cubically conver-

gent by the standard approach. However, by choosing «y, = 1 near the solution and

14



e = O((zTyy)?) we see from (3.4) that it is possible to obtain cubic convergence. We

formally state these observations as the following theorem.

Theorem 3.1 Let {xk, yx, Ar} be produced by Mehrotra’s predictor-corrector interior-

point method with zy strictly feasible. Assume
(i) strict complementarity,
(it) z. is a nondegenerate verter, and
(111) {(xk,yx, Ai)} converges to (2., i, As).
If the choices of o), and 7 satisfy
0 < op < min(o,er(xTy)) (3.6)

and

0 <7 < min(r,1 — congyp) (3.7)

where o € [0,1),7 € (0,1) and ¢1,¢y > 0, then the convergence is QQ-quadratic, i.e.

there exist y2 > 0 such that for k large
1(@htrs rrns Aar) = (o s A S Pall (s 505 k) = (209 A -
On the other hand, if instead of (3.6) we have
0 < o < min(o, cl(:rrfg/k)z) (3.8)
and instead of (3.7) we have that for large k
ap =1, (3.9)
then the convergence is Q-cubic, i.e. there exist y3 > 0 such that for k large
(15 Yrrs Argr) = (s 0o, A< w3l (a9, Ak) — (05 9, AP

Proof. The proof follows from combining the discussion given above with the details

given in Zhang, Tapia, and Dennis (1990) for the proof of Theorem 4.1. 0
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4 Concluding Remarks

In this paper we have studied the Mehrotra predictor-corrector philosophy and demon-

strated that it is equivalent to the level-1 perturbed composite Newton philosophy.

We were intrigued by the discovery that, while the level-1 composite Newton
method is known to be cubically convergent, this standard convergence rate proof
applied to the predictor-corrector interior-point method gives at best quadratic con-
vergence. The limitation of the standard proof results from the constrictive steplength
choice forced on the method by the interior point philosophy, i.e., requiring the it-
erates to remain strictly feasible with respect to the nonnegativity constraints. We
demonstrated that if one drops the interior-point aspect of the predictor-corrector
method locally, i.e., in a neighborhood of the solution steplength one is selected, and
also chooses the centering parameter to be of the order of the duality gap cubed, then

cubic convergence can be attained for nondegenerate problems.

The research presented in Zhang, Tapia, and Dennis (1990), in Zhang, Tapia
and Potra (1990), and the present research leads us to conjecture that we should
implement Newton interior-point methods and their variants in a manner which near
the solution sets the centering parameter to zero and takes steplength one, 1.e., as
old-fashioned Newton. Our preliminary numerical experiments employing this idea
were impressive and motivated the more general study described in the companion
paper El-Bakry, Tapia and Zhang (1991). The reader is referred to that paper for
numerical results.

Acknowledgement. The authors thank an anonymous referee for critical com-
ments that forced them to give a more consistent treatment of various conceptual

notions.
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